본문 바로가기
오늘의 자연어 처리

[2022-08-07] 오늘의 자연어처리

by 지환이아빠 2022. 8. 7.
반응형

Recognizing and Extracting Cybersecurtity-relevant Entities from Text

 

Cyber Threat Intelligence (CTI) is information describing threat vectors, vulnerabilities, and attacks and is often used as training data for AI-based cyber defense systems such as Cybersecurity Knowledge Graphs (CKG). There is a strong need to develop community-accessible datasets to train existing AI-based cybersecurity pipelines to efficiently and accurately extract meaningful insights from CTI. We have created an initial unstructured CTI corpus from a variety of open sources that we are using to train and test cybersecurity entity models using the spaCy framework and exploring self-learning methods to automatically recognize cybersecurity entities. We also describe methods to apply cybersecurity domain entity linking with existing world knowledge from Wikidata. Our future work will survey and test spaCy NLP tools and create methods for continuous integration of new information extracted from text.

 

 

 

 

SpanDrop: Simple and Effective Counterfactual Learning for Long Sequences

 

Distilling supervision signal from a long sequence to make predictions is a challenging task in machine learning, especially when not all elements in the input sequence contribute equally to the desired output. In this paper, we propose SpanDrop, a simple and effective data augmentation technique that helps models identify the true supervision signal in a long sequence with very few examples. By directly manipulating the input sequence, SpanDrop randomly ablates parts of the sequence at a time and ask the model to perform the same task to emulate counterfactual learning and achieve input attribution. Based on theoretical analysis of its properties, we also propose a variant of SpanDrop based on the beta-Bernoulli distribution, which yields diverse augmented sequences while providing a learning objective that is more consistent with the original dataset. We demonstrate the effectiveness of SpanDrop on a set of carefully designed toy tasks, as well as various natural language processing tasks that require reasoning over long sequences to arrive at the correct answer, and show that it helps models improve performance both when data is scarce and abundant.

 

 

 

 

Masked Vision and Language Modeling for Multi-modal Representation Learning

 

In this paper, we study how to use masked signal modeling in vision and language (V+L) representation learning. Instead of developing masked language modeling (MLM) and masked image modeling (MIM) independently, we propose to build joint masked vision and language modeling, where the masked signal of one modality is reconstructed with the help from another modality. This is motivated by the nature of image-text paired data that both of the image and the text convey almost the same information but in different formats. The masked signal reconstruction of one modality conditioned on another modality can also implicitly learn cross-modal alignment between language tokens and image patches. Our experiments on various V+L tasks show that the proposed method not only achieves state-of-the-art performances by using a large amount of data, but also outperforms the other competitors by a significant margin in the regimes of limited training data.

 

 

 

 

반응형

댓글