Prompt Tuning for Generative Multimodal Pretrained Models
Prompt tuning has become a new paradigm for model tuning and it has demonstrated success in natural language pretraining and even vision pretraining. In this work, we explore the transfer of prompt tuning to multimodal pretraining, with a focus on generative multimodal pretrained models, instead of contrastive ones. Specifically, we implement prompt tuning on the unified sequence-to-sequence pretrained model adaptive to both understanding and generation tasks. Experimental results demonstrate that the light-weight prompt tuning can achieve comparable performance with finetuning and surpass other light-weight tuning methods. Besides, in comparison with finetuned models, the prompt-tuned models demonstrate improved robustness against adversarial attacks. We further figure out that experimental factors, including the prompt length, prompt depth, and reparameteratization, have great impacts on the model performance, and thus we empirically provide a recommendation for the setups of prompt tuning. Despite the observed advantages, we still find some limitations in prompt tuning, and we correspondingly point out the directions for future studies. Codes are available at \url{this https URL}
Exploring Gender Bias in Retrieval Models
Biases in culture, gender, ethnicity, etc. have existed for decades and have affected many areas of human social interaction. These biases have been shown to impact machine learning (ML) models, and for natural language processing (NLP), this can have severe consequences for downstream tasks. Mitigating gender bias in information retrieval (IR) is important to avoid propagating stereotypes. In this work, we employ a dataset consisting of two components: (1) relevance of a document to a query and (2) "gender" of a document, in which pronouns are replaced by male, female, and neutral conjugations. We definitively show that pre-trained models for IR do not perform well in zero-shot retrieval tasks when full fine-tuning of a large pre-trained BERT encoder is performed and that lightweight fine-tuning performed with adapter networks improves zero-shot retrieval performance almost by 20% over baseline. We also illustrate that pre-trained models have gender biases that result in retrieved articles tending to be more often male than female. We overcome this by introducing a debiasing technique that penalizes the model when it prefers males over females, resulting in an effective model that retrieves articles in a balanced fashion across genders.
Efficient Fine-Tuning of Compressed Language Models with Learners
Fine-tuning BERT-based models is resource-intensive in memory, computation, and time. While many prior works aim to improve inference efficiency via compression techniques, e.g., pruning, these works do not explicitly address the computational challenges of training to downstream tasks. We introduce Learner modules and priming, novel methods for fine-tuning that exploit the overparameterization of pre-trained language models to gain benefits in convergence speed and resource utilization. Learner modules navigate the double bind of 1) training efficiently by fine-tuning a subset of parameters, and 2) training effectively by ensuring quick convergence and high metric scores. Our results on DistilBERT demonstrate that learners perform on par with or surpass the baselines. Learners train 7x fewer parameters than state-of-the-art methods on GLUE. On CoLA, learners fine-tune 20% faster, and have significantly lower resource utilization.
'오늘의 자연어 처리' 카테고리의 다른 글
[2022-08-10] 오늘의 자연어처리 (0) | 2022.08.10 |
---|---|
[2022-08-07] 오늘의 자연어처리 (0) | 2022.08.07 |
[2022-08-07] 오늘의 자연어처리 (0) | 2022.08.07 |
[2022-08-07] 오늘의 자연어처리 (0) | 2022.08.07 |
[2022-08-07] 오늘의 자연어처리 (0) | 2022.08.07 |
댓글